3.1.22 \(\int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx\) [22]

3.1.22.1 Optimal result
3.1.22.2 Mathematica [C] (verified)
3.1.22.3 Rubi [A] (verified)
3.1.22.4 Maple [A] (verified)
3.1.22.5 Fricas [B] (verification not implemented)
3.1.22.6 Sympy [F(-2)]
3.1.22.7 Maxima [B] (verification not implemented)
3.1.22.8 Giac [B] (verification not implemented)
3.1.22.9 Mupad [B] (verification not implemented)

3.1.22.1 Optimal result

Integrand size = 16, antiderivative size = 98 \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=-\frac {b \left (3 a^2-b^2\right ) x}{\left (a^2+b^2\right )^3}+\frac {a}{2 \left (a^2+b^2\right ) (b+a \cot (x))^2}+\frac {2 a b}{\left (a^2+b^2\right )^2 (b+a \cot (x))}+\frac {a \left (a^2-3 b^2\right ) \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^3} \]

output
-b*(3*a^2-b^2)*x/(a^2+b^2)^3+1/2*a/(a^2+b^2)/(b+a*cot(x))^2+2*a*b/(a^2+b^2 
)^2/(b+a*cot(x))+a*(a^2-3*b^2)*ln(a*cos(x)+b*sin(x))/(a^2+b^2)^3
 
3.1.22.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.05 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.16 \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=\frac {b \left (-3 a^2+b^2\right ) x}{\left (a^2+b^2\right )^3}+\frac {a \left (a^2-3 b^2\right ) \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^3}+\frac {a^3}{2 (a-i b)^2 (a+i b)^2 (a \cos (x)+b \sin (x))^2}+\frac {3 a b \sin (x)}{\left (a^2+b^2\right )^2 (a \cos (x)+b \sin (x))} \]

input
Integrate[Sin[x]^3/(a*Cos[x] + b*Sin[x])^3,x]
 
output
(b*(-3*a^2 + b^2)*x)/(a^2 + b^2)^3 + (a*(a^2 - 3*b^2)*Log[a*Cos[x] + b*Sin 
[x]])/(a^2 + b^2)^3 + a^3/(2*(a - I*b)^2*(a + I*b)^2*(a*Cos[x] + b*Sin[x]) 
^2) + (3*a*b*Sin[x])/((a^2 + b^2)^2*(a*Cos[x] + b*Sin[x]))
 
3.1.22.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.23, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {3042, 3564, 3042, 3964, 3042, 4012, 25, 3042, 4014, 25, 3042, 4013}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (x)^3}{(a \cos (x)+b \sin (x))^3}dx\)

\(\Big \downarrow \) 3564

\(\displaystyle \int \frac {1}{(a \cot (x)+b)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (b-a \tan \left (x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 3964

\(\displaystyle \frac {\int \frac {b-a \cot (x)}{(b+a \cot (x))^2}dx}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b+a \tan \left (x+\frac {\pi }{2}\right )}{\left (b-a \tan \left (x+\frac {\pi }{2}\right )\right )^2}dx}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\frac {\int -\frac {a^2+2 b \cot (x) a-b^2}{b+a \cot (x)}dx}{a^2+b^2}+\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}-\frac {\int \frac {a^2+2 b \cot (x) a-b^2}{b+a \cot (x)}dx}{a^2+b^2}}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}-\frac {\int \frac {a^2-2 b \tan \left (x+\frac {\pi }{2}\right ) a-b^2}{b-a \tan \left (x+\frac {\pi }{2}\right )}dx}{a^2+b^2}}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 4014

\(\displaystyle \frac {\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}-\frac {\frac {b x \left (3 a^2-b^2\right )}{a^2+b^2}-\frac {a \left (a^2-3 b^2\right ) \int -\frac {a-b \cot (x)}{b+a \cot (x)}dx}{a^2+b^2}}{a^2+b^2}}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}-\frac {\frac {a \left (a^2-3 b^2\right ) \int \frac {a-b \cot (x)}{b+a \cot (x)}dx}{a^2+b^2}+\frac {b x \left (3 a^2-b^2\right )}{a^2+b^2}}{a^2+b^2}}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}-\frac {\frac {a \left (a^2-3 b^2\right ) \int \frac {a+b \tan \left (x+\frac {\pi }{2}\right )}{b-a \tan \left (x+\frac {\pi }{2}\right )}dx}{a^2+b^2}+\frac {b x \left (3 a^2-b^2\right )}{a^2+b^2}}{a^2+b^2}}{a^2+b^2}+\frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}\)

\(\Big \downarrow \) 4013

\(\displaystyle \frac {a}{2 \left (a^2+b^2\right ) (a \cot (x)+b)^2}+\frac {\frac {2 a b}{\left (a^2+b^2\right ) (a \cot (x)+b)}-\frac {\frac {b x \left (3 a^2-b^2\right )}{a^2+b^2}-\frac {a \left (a^2-3 b^2\right ) \log (a \cos (x)+b \sin (x))}{a^2+b^2}}{a^2+b^2}}{a^2+b^2}\)

input
Int[Sin[x]^3/(a*Cos[x] + b*Sin[x])^3,x]
 
output
a/(2*(a^2 + b^2)*(b + a*Cot[x])^2) + ((2*a*b)/((a^2 + b^2)*(b + a*Cot[x])) 
 - ((b*(3*a^2 - b^2)*x)/(a^2 + b^2) - (a*(a^2 - 3*b^2)*Log[a*Cos[x] + b*Si 
n[x]])/(a^2 + b^2))/(a^2 + b^2))/(a^2 + b^2)
 

3.1.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3564
Int[sin[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin 
[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol] :> Int[(b + a*Cot[c + d*x])^n, x] /; 
 FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && IntegerQ[n] && NeQ[a^2 + b^2, 0 
]
 

rule 3964
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + 
b*Tan[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2) 
 Int[(a - b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, 
 b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4013
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)* 
(x_)]), x_Symbol] :> Simp[(c/(b*f))*Log[RemoveContent[a*Cos[e + f*x] + b*Si 
n[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 
3.1.22.4 Maple [A] (verified)

Time = 0.75 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.37

method result size
default \(\frac {a \left (a^{2}-3 b^{2}\right ) \ln \left (a +b \tan \left (x \right )\right )}{\left (a^{2}+b^{2}\right )^{3}}-\frac {a^{2} \left (a^{2}+3 b^{2}\right )}{\left (a^{2}+b^{2}\right )^{2} b^{2} \left (a +b \tan \left (x \right )\right )}+\frac {a^{3}}{2 b^{2} \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (x \right )\right )^{2}}+\frac {\frac {\left (-a^{3}+3 a \,b^{2}\right ) \ln \left (1+\tan \left (x \right )^{2}\right )}{2}+\left (-3 a^{2} b +b^{3}\right ) \arctan \left (\tan \left (x \right )\right )}{\left (a^{2}+b^{2}\right )^{3}}\) \(134\)
parallelrisch \(\frac {2 a \left (a^{2}-3 b^{2}\right ) \left (\left (a^{2}-b^{2}\right ) \cos \left (2 x \right )+2 b a \sin \left (2 x \right )+a^{2}+b^{2}\right ) \ln \left (\frac {-a \cos \left (x \right )-b \sin \left (x \right )}{\cos \left (x \right )+1}\right )-2 a \left (a^{2}-3 b^{2}\right ) \left (\left (a^{2}-b^{2}\right ) \cos \left (2 x \right )+2 b a \sin \left (2 x \right )+a^{2}+b^{2}\right ) \ln \left (\frac {1}{\cos \left (x \right )+1}\right )+\left (-6 a^{4} b x +8 a^{2} b^{3} x -2 b^{5} x -a^{5}-6 a^{3} b^{2}-5 a \,b^{4}\right ) \cos \left (2 x \right )+4 b a \left (-3 x \,a^{2} b +x \,b^{3}+a^{3}+a \,b^{2}\right ) \sin \left (2 x \right )+\left (a^{2}+b^{2}\right ) \left (-6 x \,a^{2} b +2 x \,b^{3}+a^{3}+5 a \,b^{2}\right )}{2 \left (a^{2}+b^{2}\right )^{3} \left (\left (a^{2}-b^{2}\right ) \cos \left (2 x \right )+2 b a \sin \left (2 x \right )+a^{2}+b^{2}\right )}\) \(259\)
risch \(-\frac {i x}{3 i b \,a^{2}-i b^{3}-a^{3}+3 a \,b^{2}}-\frac {2 i a^{3} x}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {6 i a x \,b^{2}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {2 a^{2} \left (2 i a b \,{\mathrm e}^{2 i x}+a^{2} {\mathrm e}^{2 i x}+3 b^{2} {\mathrm e}^{2 i x}+3 i b a -3 b^{2}\right )}{\left (-i b \,{\mathrm e}^{2 i x}+a \,{\mathrm e}^{2 i x}+i b +a \right )^{2} \left (i b +a \right )^{2} \left (-i b +a \right )^{3}}+\frac {a^{3} \ln \left ({\mathrm e}^{2 i x}-\frac {i b +a}{i b -a}\right )}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {3 a \ln \left ({\mathrm e}^{2 i x}-\frac {i b +a}{i b -a}\right ) b^{2}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}\) \(293\)
norman \(\frac {\frac {\left (2 a^{5}+10 a^{3} b^{2}\right ) \tan \left (\frac {x}{2}\right )^{2}}{a^{2} \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {\left (2 a^{5}+10 a^{3} b^{2}\right ) \tan \left (\frac {x}{2}\right )^{8}}{a^{2} \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {2 \left (-3 a^{5}-15 a^{3} b^{2}\right ) \tan \left (\frac {x}{2}\right )^{4}}{a^{2} \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {2 \left (-3 a^{5}-15 a^{3} b^{2}\right ) \tan \left (\frac {x}{2}\right )^{6}}{a^{2} \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {\left (3 a^{2}-b^{2}\right ) a^{2} b x}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {4 a^{2} b \tan \left (\frac {x}{2}\right )}{a^{4}+2 a^{2} b^{2}+b^{4}}+\frac {8 a^{2} b \tan \left (\frac {x}{2}\right )^{3}}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {8 a^{2} b \tan \left (\frac {x}{2}\right )^{7}}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {4 a^{2} b \tan \left (\frac {x}{2}\right )^{9}}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {4 a \,b^{2} \left (3 a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {8 a \,b^{2} \left (3 a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )^{3}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {8 a \,b^{2} \left (3 a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )^{7}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {4 a \,b^{2} \left (3 a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )^{9}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {2 \left (a^{2}-6 b^{2}\right ) \left (3 a^{2}-b^{2}\right ) b x \tan \left (\frac {x}{2}\right )^{4}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {2 \left (a^{2}-6 b^{2}\right ) \left (3 a^{2}-b^{2}\right ) b x \tan \left (\frac {x}{2}\right )^{6}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {\left (a^{2}+4 b^{2}\right ) \left (3 a^{2}-b^{2}\right ) b x \tan \left (\frac {x}{2}\right )^{2}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {\left (a^{2}+4 b^{2}\right ) \left (3 a^{2}-b^{2}\right ) b x \tan \left (\frac {x}{2}\right )^{8}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {\left (3 a^{2}-b^{2}\right ) a^{2} b x \tan \left (\frac {x}{2}\right )^{10}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}}{\left (1+\tan \left (\frac {x}{2}\right )^{2}\right )^{3} \left (\tan \left (\frac {x}{2}\right )^{2} a -2 b \tan \left (\frac {x}{2}\right )-a \right )^{2}}+\frac {a \left (a^{2}-3 b^{2}\right ) \ln \left (\tan \left (\frac {x}{2}\right )^{2} a -2 b \tan \left (\frac {x}{2}\right )-a \right )}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {a \left (a^{2}-3 b^{2}\right ) \ln \left (1+\tan \left (\frac {x}{2}\right )^{2}\right )}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}\) \(923\)

input
int(sin(x)^3/(a*cos(x)+b*sin(x))^3,x,method=_RETURNVERBOSE)
 
output
a*(a^2-3*b^2)/(a^2+b^2)^3*ln(a+b*tan(x))-a^2*(a^2+3*b^2)/(a^2+b^2)^2/b^2/( 
a+b*tan(x))+1/2*a^3/b^2/(a^2+b^2)/(a+b*tan(x))^2+1/(a^2+b^2)^3*(1/2*(-a^3+ 
3*a*b^2)*ln(1+tan(x)^2)+(-3*a^2*b+b^3)*arctan(tan(x)))
 
3.1.22.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (96) = 192\).

Time = 0.27 (sec) , antiderivative size = 282, normalized size of antiderivative = 2.88 \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=\frac {a^{5} + 7 \, a^{3} b^{2} - 2 \, {\left (6 \, a^{3} b^{2} + {\left (3 \, a^{4} b - 4 \, a^{2} b^{3} + b^{5}\right )} x\right )} \cos \left (x\right )^{2} + 2 \, {\left (3 \, a^{4} b - 3 \, a^{2} b^{3} - 2 \, {\left (3 \, a^{3} b^{2} - a b^{4}\right )} x\right )} \cos \left (x\right ) \sin \left (x\right ) - 2 \, {\left (3 \, a^{2} b^{3} - b^{5}\right )} x + {\left (a^{3} b^{2} - 3 \, a b^{4} + {\left (a^{5} - 4 \, a^{3} b^{2} + 3 \, a b^{4}\right )} \cos \left (x\right )^{2} + 2 \, {\left (a^{4} b - 3 \, a^{2} b^{3}\right )} \cos \left (x\right ) \sin \left (x\right )\right )} \log \left (2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} + b^{2}\right )}{2 \, {\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8} + {\left (a^{8} + 2 \, a^{6} b^{2} - 2 \, a^{2} b^{6} - b^{8}\right )} \cos \left (x\right )^{2} + 2 \, {\left (a^{7} b + 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} + a b^{7}\right )} \cos \left (x\right ) \sin \left (x\right )\right )}} \]

input
integrate(sin(x)^3/(a*cos(x)+b*sin(x))^3,x, algorithm="fricas")
 
output
1/2*(a^5 + 7*a^3*b^2 - 2*(6*a^3*b^2 + (3*a^4*b - 4*a^2*b^3 + b^5)*x)*cos(x 
)^2 + 2*(3*a^4*b - 3*a^2*b^3 - 2*(3*a^3*b^2 - a*b^4)*x)*cos(x)*sin(x) - 2* 
(3*a^2*b^3 - b^5)*x + (a^3*b^2 - 3*a*b^4 + (a^5 - 4*a^3*b^2 + 3*a*b^4)*cos 
(x)^2 + 2*(a^4*b - 3*a^2*b^3)*cos(x)*sin(x))*log(2*a*b*cos(x)*sin(x) + (a^ 
2 - b^2)*cos(x)^2 + b^2))/(a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8 + (a^8 + 
2*a^6*b^2 - 2*a^2*b^6 - b^8)*cos(x)^2 + 2*(a^7*b + 3*a^5*b^3 + 3*a^3*b^5 + 
 a*b^7)*cos(x)*sin(x))
 
3.1.22.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=\text {Exception raised: AttributeError} \]

input
integrate(sin(x)**3/(a*cos(x)+b*sin(x))**3,x)
 
output
Exception raised: AttributeError >> 'NoneType' object has no attribute 'pr 
imitive'
 
3.1.22.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 359 vs. \(2 (96) = 192\).

Time = 0.29 (sec) , antiderivative size = 359, normalized size of antiderivative = 3.66 \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=-\frac {2 \, {\left (3 \, a^{2} b - b^{3}\right )} \arctan \left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1}\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {{\left (a^{3} - 3 \, a b^{2}\right )} \log \left (-a - \frac {2 \, b \sin \left (x\right )}{\cos \left (x\right ) + 1} + \frac {a \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}}\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {{\left (a^{3} - 3 \, a b^{2}\right )} \log \left (\frac {\sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {2 \, {\left (\frac {2 \, a^{2} b \sin \left (x\right )}{\cos \left (x\right ) + 1} - \frac {2 \, a^{2} b \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}} + \frac {{\left (a^{3} + 5 \, a b^{2}\right )} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}}\right )}}{a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4} + \frac {4 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \sin \left (x\right )}{\cos \left (x\right ) + 1} - \frac {2 \, {\left (a^{6} - 3 \, a^{2} b^{4} - 2 \, b^{6}\right )} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} - \frac {4 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}} + \frac {{\left (a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}}} \]

input
integrate(sin(x)^3/(a*cos(x)+b*sin(x))^3,x, algorithm="maxima")
 
output
-2*(3*a^2*b - b^3)*arctan(sin(x)/(cos(x) + 1))/(a^6 + 3*a^4*b^2 + 3*a^2*b^ 
4 + b^6) + (a^3 - 3*a*b^2)*log(-a - 2*b*sin(x)/(cos(x) + 1) + a*sin(x)^2/( 
cos(x) + 1)^2)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) - (a^3 - 3*a*b^2)*log(s 
in(x)^2/(cos(x) + 1)^2 + 1)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + 2*(2*a^2 
*b*sin(x)/(cos(x) + 1) - 2*a^2*b*sin(x)^3/(cos(x) + 1)^3 + (a^3 + 5*a*b^2) 
*sin(x)^2/(cos(x) + 1)^2)/(a^6 + 2*a^4*b^2 + a^2*b^4 + 4*(a^5*b + 2*a^3*b^ 
3 + a*b^5)*sin(x)/(cos(x) + 1) - 2*(a^6 - 3*a^2*b^4 - 2*b^6)*sin(x)^2/(cos 
(x) + 1)^2 - 4*(a^5*b + 2*a^3*b^3 + a*b^5)*sin(x)^3/(cos(x) + 1)^3 + (a^6 
+ 2*a^4*b^2 + a^2*b^4)*sin(x)^4/(cos(x) + 1)^4)
 
3.1.22.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 242 vs. \(2 (96) = 192\).

Time = 0.28 (sec) , antiderivative size = 242, normalized size of antiderivative = 2.47 \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=-\frac {{\left (3 \, a^{2} b - b^{3}\right )} x}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {{\left (a^{3} - 3 \, a b^{2}\right )} \log \left (\tan \left (x\right )^{2} + 1\right )}{2 \, {\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )}} + \frac {{\left (a^{3} b - 3 \, a b^{3}\right )} \log \left ({\left | b \tan \left (x\right ) + a \right |}\right )}{a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}} - \frac {3 \, a^{3} b^{4} \tan \left (x\right )^{2} - 9 \, a b^{6} \tan \left (x\right )^{2} + 2 \, a^{6} b \tan \left (x\right ) + 14 \, a^{4} b^{3} \tan \left (x\right ) - 12 \, a^{2} b^{5} \tan \left (x\right ) + a^{7} + 9 \, a^{5} b^{2} - 4 \, a^{3} b^{4}}{2 \, {\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} {\left (b \tan \left (x\right ) + a\right )}^{2}} \]

input
integrate(sin(x)^3/(a*cos(x)+b*sin(x))^3,x, algorithm="giac")
 
output
-(3*a^2*b - b^3)*x/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) - 1/2*(a^3 - 3*a*b^ 
2)*log(tan(x)^2 + 1)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + (a^3*b - 3*a*b^ 
3)*log(abs(b*tan(x) + a))/(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7) - 1/2*(3*a 
^3*b^4*tan(x)^2 - 9*a*b^6*tan(x)^2 + 2*a^6*b*tan(x) + 14*a^4*b^3*tan(x) - 
12*a^2*b^5*tan(x) + a^7 + 9*a^5*b^2 - 4*a^3*b^4)/((a^6*b^2 + 3*a^4*b^4 + 3 
*a^2*b^6 + b^8)*(b*tan(x) + a)^2)
 
3.1.22.9 Mupad [B] (verification not implemented)

Time = 30.10 (sec) , antiderivative size = 5324, normalized size of antiderivative = 54.33 \[ \int \frac {\sin ^3(x)}{(a \cos (x)+b \sin (x))^3} \, dx=\text {Too large to display} \]

input
int(sin(x)^3/(a*cos(x) + b*sin(x))^3,x)
 
output
((2*tan(x/2)^2*(5*a*b^2 + a^3))/(a^4 + b^4 + 2*a^2*b^2) - (4*a^2*b*tan(x/2 
)^3)/(a^4 + b^4 + 2*a^2*b^2) + (4*a^2*b*tan(x/2))/(a^4 + b^4 + 2*a^2*b^2)) 
/(a^2 - tan(x/2)^2*(2*a^2 - 4*b^2) + a^2*tan(x/2)^4 + 4*a*b*tan(x/2) - 4*a 
*b*tan(x/2)^3) - (log(a + 2*b*tan(x/2) - a*tan(x/2)^2)*(3*a*b^2 - a^3))/(a 
^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2) + (log(1/(cos(x) + 1))*(6*a*b^2 - 2*a^3) 
)/(2*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2)) + (2*b*atan((tan(x/2)*(((((6*a*b 
^2 - 2*a^3)*((b*((32*(a^2*b^12 - 2*a^14 + 15*a^4*b^10 + 48*a^6*b^8 + 62*a^ 
8*b^6 + 33*a^10*b^4 + 3*a^12*b^2))/(a^12 + b^12 + 6*a^2*b^10 + 15*a^4*b^8 
+ 20*a^6*b^6 + 15*a^8*b^4 + 6*a^10*b^2) - (16*(6*a*b^2 - 2*a^3)*(3*a*b^16 
+ 21*a^3*b^14 + 63*a^5*b^12 + 105*a^7*b^10 + 105*a^9*b^8 + 63*a^11*b^6 + 2 
1*a^13*b^4 + 3*a^15*b^2))/((a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2)*(a^12 + b^1 
2 + 6*a^2*b^10 + 15*a^4*b^8 + 20*a^6*b^6 + 15*a^8*b^4 + 6*a^10*b^2)))*(3*a 
^2 - b^2))/(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2) - (16*b*(6*a*b^2 - 2*a^3)*( 
3*a^2 - b^2)*(3*a*b^16 + 21*a^3*b^14 + 63*a^5*b^12 + 105*a^7*b^10 + 105*a^ 
9*b^8 + 63*a^11*b^6 + 21*a^13*b^4 + 3*a^15*b^2))/((a^6 + b^6 + 3*a^2*b^4 + 
 3*a^4*b^2)^2*(a^12 + b^12 + 6*a^2*b^10 + 15*a^4*b^8 + 20*a^6*b^6 + 15*a^8 
*b^4 + 6*a^10*b^2))))/(2*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2)) - (b*((32*(2 
*a*b^10 - 24*a^3*b^8 - 36*a^5*b^6 + 8*a^7*b^4 + 18*a^9*b^2))/(a^12 + b^12 
+ 6*a^2*b^10 + 15*a^4*b^8 + 20*a^6*b^6 + 15*a^8*b^4 + 6*a^10*b^2) - ((6*a* 
b^2 - 2*a^3)*((32*(a^2*b^12 - 2*a^14 + 15*a^4*b^10 + 48*a^6*b^8 + 62*a^...